
INTERNATIO NAL JOURNAL O F MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

 ISSN: 2320-1363

 1

Secured Data Communication in Cloud Computing using

Channel API with MD5 Hashing

E. Srimathi*1, S. Geetha*2, I. Anette Regina*3

MPhil, Research Scholar, Muthurangam Govt. Arts College, Vellore, Tamilnadu, India

Assistant Professor, Department of CS, Muthurangam Govt. Arts College, Vellore,

Tamilnadu, India

Associate Professor, Department of CS, Muthurangam Govt. Arts College, Vellore,

Tamilnadu, India

Abstract

Cloud computing offers the vision of a virtually infinite pool of computing, storage and networking

resources where application can be scalable and deployed. The security threats on cloud increases

rapidly. The threat starts from login module to the core storage. In this project different levels of

threat is handled efficiently, which enables the secured data communications between the server and

client. The login is authenticated using Open Authentication Protocol (OAuth) 2.0 with enhanced

security mechanism. The data theft and other masquerading attacks are prevented using channel API

(Application based Program Interface) which sends the data in a secured channel establish among the

sender and the receiver using MD5(Message-Digest) Hashing. This is demonstrated by building an

cloud based chat application which transfers the data from server to client and vice versa. It includes

voice, non-voice and video chat communication. The Video Chat is demonstrated using WebRTC

(Web Real-Time Communication).WebRTC provides page to page communication among HTML.

Hence this project covers the prevention mechanism for several threats in cloud using different

techniques.

I.INTRODUCTION

Cloud computing offers the vision of a

virtually infinite pool of computing, storage

and networking resources where application

can be scalable and deployed. In particular

Google cloud service provides Google App

Engine for Java! With App Engine, you can

build web applications using standard Java

technologies and run them on Google's

scalable infrastructure. The Java environment

provides a Java 7 JVM, a Java Servlets

interface, and support for standard interfaces

to the App Engine scalable data store and

services, such as JDO, JPA, Java Mail, and

JCache. Standards support makes developing

your application easy and familiar, and also

makes porting your application to and from

your own servlet environment straightforward.

The Google Plug-in for Eclipse adds new

project wizards and debug configurations to

your Eclipse IDE for App Engine projects.

App Engine for Java makes it especially easy

to develop and deploy world-class web

applications using Google Web Toolkit

(GWT). The Eclipse plug-in comes bundled

with the App Engine and GWT SDKs. Third-

party plug-in is available for other Java IDEs

as well.

The main uniqueness of this implies on its

learning structure. We are enhancing the

INTERNATIO NAL JOURNAL O F MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

 ISSN: 2320-1363

 2

features of this application by adding more

functionality. One of the functionality we are

adding is the calls through browsers where

browser to browser communication is

achieved for video chat. Text chatting based

on individual and group is also available.

FLOW DIAGRAM

Fig 1: Data Flow Diagram

II.MODULE DESCRIPTION

1. Open Authentication

In general, this module deals with

authenticating the user inside the application,

this is considered to be the efficient and

secured method in order to allow the user to be

authenticated inside the application. An open

authentication protocol is an open standard to

authorization. It specifies a process for

resource owners to authorize third-party access

to their server resources without sharing their

credentials. Designed specifically to work with

Hypertext Transfer Protocol (HTTP), OAuth

essentially allows access tokens to be issued to

third-party clients by an authorization server,

with the approval of the resource owner, or

end-user. The client then uses the access token

to access the protected resources hosted by the

resource server.

Steps involved in OAuth:

(i). Obtain OAuth 2.0 credentials

Both Service Provider (SP) like

Google and the application know OAuth 2.0

credentials such as a client ID and client

secret. The set of values varies based on what

type of application you are building. For

example, a JavaScript application does not

require a secret, but a web server application

does.

(ii). Obtain an access token from the Google

Authorization Server.

Before your application can access

private data using a Google API, it must obtain

an access token that grants access to that API.

A single access token can grant varying

degrees of access to multiple APIs. A variable

parameter called scope controls the set of

resources and operations that an access token

permits. During the access-token request, your

application sends one or more values in the

scope parameter. There are several ways to

make this request, and they vary by type of

application you are building.

For example, a JavaScript application might

request an access token using a browser

INTERNATIO NAL JOURNAL O F MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

 ISSN: 2320-1363

 3

redirect to Google, while an application

installed on a device that has no browser uses

web service requests. Some requests require an

authentication step where the user logs in with

their Google account. After logging in, the

user is asked whether they are willing to grant

the permissions that your application is

requesting. This process is called user consent.

If the user grants the permission, the Google

Authorization Server sends your application an

access token (or an authorization code that

your application can use to obtain an access

token). If the user does not grant the

permission, the server returns an error.

(iii). Send the access token to an API.

After an application obtains an access

token, it sends the token to a Google API in an

HTTP authorization header. It is possible to

send tokens as URI query-string parameters,

but we don't recommend it, because URI

parameters can end up in log files that are not

completely secure. Also, it is good REST

practice to avoid creating unnecessary URI

parameter names.Access tokens are valid only

for the set of operations and resources

described in the scope of the token request.

(iv). Refresh the access token, if necessary.

Access tokens have limited lifetimes.

If your application needs access to a Google

API beyond the lifetime of a single access

token, it can obtain a refresh token. A refresh

token allows your application to obtain new

access tokens. Final after getting the token

from Google, the key is exchanged between

the Google server and the web application,

then if the results matches, then the user is

allowed to enter in to the application.

Fig 2: Open Authentication Process

2. Web Service Identification

In this module, the web services based

on the functionalities required are generated.

In general, each web services are intended to

perform a separate operation. A web service

repository is a set of disjoint services. We

denote it as {w1, w2,….}

3. Functionality Request

As the growth of web related

requirements increases gradually, the users

who interact with the web needs the system to

system interaction, created the need for a

structure which provided interaction not only

INTERNATIO NAL JOURNAL O F MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

 ISSN: 2320-1363

 4

with the user but also help application to

application interaction. This problem called as

Application Integration which is resolved by

Web Services. Moreover, with the addition of

the intelligence and autonomy of software

agents, transactions may be equally automated

for consumer-to-consumer, business-to-

consumer, and business-to-business

collaborations.

But it is a clear observation that

number of web services is increased where a

problem is raised to find an appropriate web

service which satisfies user needs. The user

wants an efficient way to find an appropriate

web service which satisfied his needs in a

short time. The functionality is mainly decided

based on the input that is set for the web

services and the output of the web services that

the user needs. This is done in this module.

4. QoS Constraint

The objective of this module is to

maximize an application-specific utility

function under the end-to-end QoS constraints.

Existing methods can be divided into two

types: local selection method and global

selection method. The local selection method

is simple and efficient, but cannot meet the

end-to-end QoS constraints. The global

selection method can satisfy the global QoS

constraints, but at the price of higher

computational time, and it is not suitable for

the dynamic environment.

To address this issue, an algorithm to combine

global QoS constraints with local selection is

proposed, which first splits the global QoS

constraints into local constraints using

heuristic method, and then uses local selection

to find the optimal solution under the local

constraints. It is intended to improve the

performance by reducing the computation time

greatly while achieving close-to-optimal

results.

5. Operation Applicability

In this module, the web services are

given an operation. After setting the operation

the Web service is triggered. Then the

implications evolved during the life time of the

web service call are monitored. The variation

is identified among the services where the

operation differs one among the other as the

time varies for each different web service

calls.

5.1 Cross Domain Call

To make a cross domain call among

web services, the Cross Origin Resource

Sharing (CORS) is used which allows many

resources from outside domain where the

browser and the server are interact to

determine whether or not to allow the cross-

origin request.

Consider an example, a page from

http://www.application1.com attempts to

access a user’s data in

http://www.application2.com If the user’s

INTERNATIO NAL JOURNAL O F MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

 ISSN: 2320-1363

 5

browser implements CORS, then request

header (i.e.) Origin:

http://www.application1.com sends to

application2. If an application2 allows the

request, then it sends Access-Control-Allow-

Origin: http://www.application1.com header in

its response. If it does not allow the cross

origin request, then browser sends an error to

application1 instead of application2 response

by using the following header Access-Control-

Allow-Origin: *

This is applicable in the public content

and it is intended to be accessible to everyone.

It is related to JSONP technique for cross

domain requests to make a cross domain call.

III. HTTP REDIRECT METHOD

The HttpRedirect concept is used to make a

cross domain call to third party web services.

The HttpRedirect property specifies the

directory or URL to which a client is

redirected when attempting to access a specific

resource. For fast data retrieval this

HttpRedirect is used.In the simplest

configuration, it need only to set the enabled

and destination attributes of the

<httpRedirect> element in order to redirect

clients to a new location.

III.1. Aim of HttpRedirect:

Firstly, transferring to another page

using Redirect conserves server resources.

Instead of telling the browser to redirect, it

simply changes the "focus" on the Web server

and transfers the request. This means you don't

get quite as many HTTP requests coming

through, which therefore eases the pressure on

your Web server and makes your applications

run faster.

Secondly, Redirect maintains the

original URL in the browser. This can really

help streamline data entry techniques, although

it may make for confusion when debugging.

IV.CHANNEL API FOR CHAT

IMPLEMENTATION

The Channel API creates a persistent

connection between your application and

servers, allowing your application to send

messages to JavaScript clients in real time

without the use of polling. This is useful for

applications designed to update users about

new information immediately. Using the

HttpRedirect, the OAuth 2.0 is implemented to

make the cross domain call and channel API

sends the data in a secured channel establish

among the sender and receiver using

MD5(Message Digest) Hashing, apart from

this the channel API based multiuser chat is

implemented in order to show the efficiency of

web service call made on every chat. Each

channel is subjected to be a separate network

connection and help to access quickly to

update the information to users.

INTERNATIO NAL JOURNAL O F MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

 ISSN: 2320-1363

 6

The following elements are used mainly in

channel API.

i. JavaScript Client - the user interacts

with a JavaScript client built into a webpage.

ii. The Server - creating a unique

channel for individual javascript clients and

send a token. Receive the update messages

from clients via HTTP request. Finally,

sending update messages to clients via their

channels.

iii. The client ID - The Client ID is

responsible for identifying individual

JavaScript clients on the server.

iv. Token - Tokens are responsible for

allowing the JavaScript Client to connect and

listen to the channel created for it.

v. The channel - A channel is a one-

way communication path through which the

server sends updates to a specific JavaScript

client identified by its Client ID.

vi. The message - Messages are sent

via HTTP requests from one client to the

server.

vii. Socket - The JavaScript client

opens a socket using the token provided by the

server. It uses the socket to listen for updates

on the channel.

viii. Presence - The server can register

to receive a notification when a client connects

to or disconnects from a channel.

The two diagrams illustrate the life of

a typical example message sent via Channel

API between two different clients using one

possible implementation of Channel API.

Fig 3: Request token in channel API

This diagram shows the creation of a channel

on the server. In this example, it shows the

JavaScript client explicitly requests a token

and sends its Client ID to the server. In

contrast, you could choose to design your

application to inject the token into the client

before the page loads in the browser, or some

other implementation if preferred.

Fig 4: Posting message in channel

API

INTERNATIO NAL JOURNAL O F MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

 ISSN: 2320-1363

 7

Next, the server uses Client A’s Client ID to

create a channel and then sends the token for

that channel back to Client A. Client A uses

the token to open a socket and listen for

updates on the channel.

V. CONCLUSION

In this paper, a new technique has been

proposed to get optimized Web Service

Composition. To achieve the Quality of

Service, a CORS mechanism is used to make

the cross domain call. Using HTTP Redirect,

the fast data retrieval access can be obtained

which causes high throughput and reliability.

Also, to increase the efficiency of QoS,

Channel API is used for multiuser chat where

the web services call made on every chat also,

it update the information quickly. For security

reasons, Open Authentication protocol is used.

Thus our whole process satisfies the

non-functional properties of QoS.

Computational cost and time complexity is

reduced by our algorithm called approximation

algorithm. In a large web service repositories

the above process are applicable to obtain the

optimal QoS. Moreover, the overall global

QoS constraints are highly optained.

REFERENCES

[1] Java, The Complete Reference, 8th

Edition, by Herbert Schildt, Comprehensive

Coverage of the Java Language.

[2]Professional JavaScript for Web

Developers, by Nicholas C. Zakas, Third

Edition.

[3]JavaScript and HTML5 Now, A New

Paradigm for the Open Web, by O’Reilly,

Kyle Simpson.

[4]http://www.kpmg.com/Global/en/IssuesAnd

Insights/ArticlesPublications/Documents/cloud

-clarity.pdf (Accessed 2nd November 2014)

[5]Mell, P., and Grance, T., ‘The NIST

definition of cloud computing’, 2011

[6]Gartner: ‘Forecast Overview: Public Cloud

Services, Worldwide, 2011-2016, 2Q12

Update’, in Editor (Ed.) (̂Eds.): ‘Book

Forecast Overview: Public Cloud Services,

Worldwide, 2011-2016, 2Q12 Update’ (2012,

edn.), pp. 18-19 .

[7]http://ec.europa.eu/digital-

agenda/events/cf/e2wp2014/document.cfm?do

c_id=23902. (Accessed 18th November 2014)

[8]Gracia, J., and Mena, E., ‘Semantic

heterogeneity issues on the web’, Internet

Computing, IEEE, 2012, 16, (5), pp. 60-67

[9]Kobayashi, M., and Takeda, K.,

‘Information retrieval on the web’, ACM

Computing Surveys (CSUR), 2000, 32, (2),

pp. 144-173

[10]Nagireddi, V.S.K., and Mishra, S., ‘An

ontology based cloud service generic search

engine’, in Editor (Eds.): ‘Book An ontology

based cloud service generic search engine’

(IEEE, 2013, edn.), pp. 335-340 .

